BPNN‐based flow classification and admission control for software defined IIoT

Author:

Wang Cheng1ORCID,Xue Hai2ORCID,Huan Zhan3

Affiliation:

1. School of Computer Science and Artificial Intelligence Changzhou University Jiangsu China

2. School of Optical‐Electrical and Computer Engineering University of Shanghai for Science and Technology Shanghai China

3. School of Microelectronics and Control Engineering Changzhou University Jiangsu China

Abstract

AbstractFlow admission control (FAC) aims to efficiently manage the service requests while maximizing the network utilization. With multiple connection requests, access delay or even service interruption may occur. This paper proposes a novel FAC approach to reduce the contention between the end nodes and ensure high utilization of the networking resources for software defined IIoT. First, incoming flows are classified into different priorities using back propagation neural network based on selected features representing the current network status. Second, with the designed flow admission policies, bandwidth and buffer size are estimated with stochastic network calculus model. Finally, the thresholds of the proposed FAC scheme are dynamically decided based on the above two parameters. Various flows are admitted or rejected via the proposed FAC to maintain real time processing. Unlike traditional FAC schemes rely on static priority systems, the proposed scheme leverages machine learning technique for dynamic flow prioritization and the stochastic network calculus model for precise estimation. Computer simulation reveals that the proposed scheme accurately classifies the flows, and substantially decreases the transmission delay and improves the network utilization compared to the existing FAC schemes. This highlights the superiority of the proposed scheme meeting the demands of software defined IIoT.

Funder

Changzhou University

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3