An improved resource allocation method for mapping service function chains based on A3C

Author:

Huang Wanwei1ORCID,Tian Haobin1,Zhang Xiaohui2,Huang Min1ORCID,Li Song3,Li Yuhua1

Affiliation:

1. College of Software Engineering Zhengzhou University of Light Industry Zhengzhou Henan China

2. Henan Xinda Wangyu Technology Co. Ltd Zhengzhou Henan China

3. The Third Construction Co. Ltd of China CREC Railway Electrification Engineering Group Zhengzhou Henan China

Abstract

AbstractNetwork function virtualization (NFV) technology deploys network functions as software functions on a generalised hardware platform and provides customised network services in the form of service function chain (SFC), which improves the flexibility and scalability of network services and reduces network service costs. However, irrational resource allocation during service function chain mapping will cause problems such as low resource utilisation, long service request processing time and low mapping rate. To address the unreasonable problem of service mapping resource allocation, an improved service function chain mapping resource allocation method (SA3C) based on the Asynchronous advantageous action evaluation algorithm (A3C) is proposed. This study proposes an SFC mapping model and a mathematical model for joint allocation, which modeled the minimization of processing time as a Markov process. The main network was trained and multiple sub‐networks were generated in parallel using the ternary and deep reinforcement learning algorithm A3C, with the goal of identifying the optimal resource allocation strategy. The experimental simulation results show that compared with the Actor‐Critic (AC) and Policy Gradient (PG) methods, SA3C algorithm can improve the resource utilisation by 9.85%, reduce the total processing time by 10.72%, and improve the mapping rate by 6.72%, by reasonably allocating node computational resources and link bandwidth communication resources.

Funder

Henan Provincial Science and Technology Research Project

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3