Two‐step attribute reduction for AIoT networks

Author:

Ren Chao1ORCID,Lyu Gaoxin1,Wang Xianmei1,Huang Yao2,Li Wei1,Sun Lei3ORCID

Affiliation:

1. School of Computer and Communication Engineering University of Science and Technology Beijing Beijing China

2. College of Information Engineering Chengdu University of Information Technology Chengdu China

3. School of Automation and Electrical Engineering University of Science and Technology Beijing Beijing China

Abstract

AbstractThe evolution of Artificial Intelligence of Things (AIoT) pushes connectivity from human‐to‐things and things‐to‐things, to AI‐to‐things, has resulted in more complex physical networks and logical associations. This has driven the demand for Internet of Things (IoT) devices with powerful edge data processing capabilities, leading to exponential growth in device quantity and data generation. However, conventional data preprocessing methods, such as data compression and encoding, often require edge devices to allocate computational resources for decoding. Additionally, some lossy compression methods, like JPEG, may result in the loss of important information, which has negative impact on the AI training. To address these challenges, this paper proposes a two‐step attribute reduction approach, targeting devices and dimensions, to reduce the massive amount of data in the AIoT network while avoiding unnecessary utilization of edge device resources for decoding. The device‐oriented and dimension‐oriented attribute reductions identify important devices and dimensions, respectively, to mitigate the multimodal interference caused by the large‐scale devices in the AIoT network and the curse of dimensionality associated with high‐dimensional AIoT data. Numerical results and analysis show that this approach effectively eliminates redundant devices and numerous dimensions in the AIoT network while maintaining the basic data correlation.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data reduction in big data: a survey of methods, challenges and future directions;International Journal of Data Science and Analytics;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3