Intelligent reflecting surface‐assisted UAV inspection system based on transfer learning

Author:

Du Yifan1ORCID,Qi Nan12ORCID,Wang Kewei1,Xiao Ming3,Wang Wenjing4

Affiliation:

1. Department of Electrical Engineering Nanjing University of Aeronautics and Astronautics Nanjing China

2. National Mobile Communications Research Laboratory Southeast University NanJing China

3. School of Electrical Engineering of KTH Royal Institute of Technology Stockholm Sweden

4. School of Communication and Information Engineering Xi'an University of Posts and Telecommunications Xi'an China

Abstract

AbstractIntelligent reflective surface (IRS) provides an effective solution for reconfiguring air‐to‐ground wireless channels, and intelligent agents based on reinforcement learning can dynamically adjust the reflection coefficient of IRS to adapt to changing channels. However, most exiting IRS configuration schemes based on reinforcement learning require long training time and are difficult to be industrially deployed. This paper, proposes a model‐free IRS control scheme based on reinforcement learning and adopts transfer learning to accelerate the training process. A knowledge base of the source tasks has been constructed for transfer learning, allowing accumulation of experience from different source tasks. To mitigate potential negative effects of transfer learning, quantitative analysis of task similarity through unmanned aerial vehicle (UAV) flight path is conducted. After identifying the most similar source task to the target task, parameters of the source task model are used as the initial values for the target task model to accelerate the convergence process of reinforcement learning. Simulation results demonstrate that the proposed method can increase the convergence speed of the traditional DDQN algorithm by up to 60%.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

National Aerospace Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3