Generation of a synthetic aperture radar deception jamming signal based on a deep echo inversion network

Author:

Xiao Yihan1ORCID,Dai Liang1ORCID,Yu Xiangzhen2,Zhou Yinghui3,Zhao Zhongkai1ORCID

Affiliation:

1. Key Laboratory of Advanced Marine Communication and Information Technology Ministry of Industry and Information Technology Harbin Engineering University Harbin China

2. Shanghai Radio Equipment Research Institute Shanghai China

3. National Key Laboratory on Electromagnetic Environmental Effects and Electro‐Optical Engineering Nanjing China

Abstract

AbstractExisting methods for generating synthetic aperture radar (SAR) deception jamming signals have slow speed, low imaging quality, and insufficient intelligence in complex electromagnetic environments. This paper proposes a deep learning‐based SAR deception jamming signal generation method based on deep echo inversion Unet (DEIUnet). This method has high speed and provides high‐image quality of the interference signal. A Swin Next (SN) block is proposed to combine local and non‐local information in the image and echo data. The Unet structure consists of SN blocks, and a residual connection is used as the jump connection to fuse the multi‐scale feature information from the echo and image data. PixelShuffle is utilised for up‐sampling to generate high‐quality echo data. The experimental results on MSTAR and Sentinel‐1 data sets verify the effectiveness and superiority of DEIUnet for echo inversion. The imaging results of the SAR deception jamming signal generated by DEIUnet on an MSTAR scene confirm the effectiveness of the proposed method.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3