Distributed deep reinforcement learning for integrated generation‐control and power‐dispatch of interconnected power grid with various renewable units
Author:
Affiliation:
1. College of Electric Power South China University of Technology Guangzhou China
2. China Electric Power Research Institute (Nanjing) Nanjing China
3. College of Engineering Shantou University Shantou China
Funder
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Renewable Energy, Sustainability and the Environment
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/rpg2.12310
Reference36 articles.
1. Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system;Li J.;Appl. Energy,2021
2. A novel data‐driven controller for solid oxide fuel cell via deep reinforcement learning;Li J.;Journal of Cleaner Production,2021
3. Dynamic energy conversion and management strategy for an integrated electricity and natural gas system with renewable energy: Deep reinforcement learning approach;Zhang B.;Energy Convers. Manage.,2020
4. Guest editorial: Applications of artificial intelligence in modern power systems: Challenges and solutions;Hu W.;J. Mod. Power Syst. Clean Energy,2020
5. A data‐driven output voltage control of solid oxide fuel cell using multi‐agent deep reinforcement learning;Li J.;Applied Energy,2021
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Overview of the PI (2DoF) algorithm in wind power system optimization and control;Frontiers in Energy Research;2024-08-09
2. Deep Learning-Based Optimal Scheduling Scheme for Distributed Wind Power Systems;Journal of Circuits, Systems and Computers;2024-05-25
3. Data sharing mode of dispatching automation system based on distributed machine learning;International Journal of Network Management;2024-04-08
4. A Reinforcement Learning Based Coordinated but Differentiated Load Frequency Control Method With Heterogeneous Frequency Regulation Resources;IEEE Transactions on Power Systems;2024-01
5. Taxonomy of Power Converter Control Schemes Based on the Complex Frequency Concept;IEEE Transactions on Power Systems;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3