Enhancing network attack detection across infrastructures: An automatic labeling method and deep learning model with an attention mechanism

Author:

Vu Dinh‐Minh1ORCID,La Thi Ha2,Nguyen Gia Bach3,Huh Eui‐Nam4,Tran Hoang Hai25

Affiliation:

1. School of Engineering Pedagogy Hanoi University of Science and Technology Hanoi Vietnam

2. School of Information and Communication Technology Hanoi University of Science and Technology Hanoi Vietnam

3. Department of Information and Communications Engineering Shibaura Institute of Technology Tokyo Japan

4. Department of Computer Science and Engineering Kyung Hee University Yongin South Korea

5. Network and Information Center Hanoi University of Science and Technology Hanoi Vietnam

Abstract

AbstractIn the era of industry 4.0 and the widespread use of digital devices, the number of cyber attacks poses an escalating and diverse threat, jeopardizing users' online activities. Intrusion detection systems (IDS) emerge as pivotal solutions, playing a crucial role in detecting anomalous signals within network systems. To counter novel attack patterns, IDS systems require periodic rule updates for effective identification of unusual signals. Typically, these policies are updated based on rule‐based or deep learning algorithms to enhance detection performance. However, the insufficient number of labeled samples remains a challenge for real‐world deployment. In this article, an automated labeling method is presented that has shown high effectiveness, requiring minimal hardware resources, and applicable to IDS systems. Additionally, the approach utilizes transfer learning combined with attention mechanisms to boost the efficiency of abnormal signal detection. The results from the approach are compared with those of a reference model, illustrating an overall improvement of nearly 10% in our model's performance compared to the reference model. This underscores the effectiveness of automating rule adjustments for IDS, contributing significantly to reducing associated financial costs. The research addresses the challenges in deploying IDS in real‐world scenarios and provides a valuable contribution to enhancing cyber threat detection capabilities.A preprint has previously been published [11].

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3