A hierarchical reinforcement learning approach for energy‐aware service function chain dynamic deployment in IoT

Author:

Wang Shuyi12ORCID,Cao Haotong1,Yang Longxiang1

Affiliation:

1. College of Telecommunications and Information Engineering Nanjing University of Posts and Telecommunications Nanjing China

2. Department of Information Engineering Nanhang Jincheng College Nanjing China

Abstract

AbstractTraffic volume is increasing dramatically due to the quick development of technologies like online gaming, on‐demand video streaming, and the Internet of Things (IoT). The telecommunications industry's large‐scale expansion is increasing its energy usage and carbon footprint. Given the desire to minimize energy consumption and carbon emissions, one of the most essential concerns of future communication networks is ensuring rigorous performance restrictions of IoT services while improving energy efficiency. In this regard, a convolutional neural network‐based hierarchical reinforcement learning approach is provided to lower total energy consumption and carbon emissions in the dynamic service function chaining situations. This method can more effectively lower energy consumption and carbon emissions when compared to other hierarchical algorithms based on conventional deep neural networks and non‐hierarchical algorithms. The suggested method is tested in three typical complicated networks with different network parameters to show its suitability in different network scenarios.

Funder

Jiangsu Provincial Key Research and Development Program

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Reference27 articles.

1. ESSO: An Energy Smart Service Function Chain Orchestrator;Bari M.F.;IEEE Trans. Netw. Serv. Manag.,2019

2. Estimating the Carbon Footprint of Telecommunications Products: A Heuristic Approach;Joyce T.;J. Mech. Des.,2010

3. Federal renewable energy projects and technologies.http://energy.gov/eere/femp/federal‐renewable‐energy‐projects‐and‐technologies. Accessed 27 December2021

4. Ikebe H. Yamashita N. Nishii R.:Green Energy for Telecommunications. In:INTELEC 07‐29th International Telecommunications Energy Conference pp.1–6.IEEE Piscataway(2008)

5. NFV Orchestration Framework Addressing SFC Challenges

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3