Enhancing cloud security: A study on ensemble learning‐based intrusion detection systems

Author:

Al‐Sharif Maha1,Bushnag Anas1ORCID

Affiliation:

1. Faculty of Computers and Information Technology University of Tabuk Tabuk Saudi Arabia

Abstract

AbstractCloud computing has become an essential technology for people and enterprises due to the simplicity and rapid availability of services on the internet. These services are usually delivered through a third party, which provides the required resources for users. Therefore, because of the distributed complexity and increased spread of this type of environment, many attackers are attempting to access sensitive data from users and organizations. One counter technique is the use of intrusion detection systems (IDSs), which detect attacks within the cloud environment by monitoring traffic activity. However, since the computing environment varies from the environments of most traditional systems, it is difficult for IDSs to identify attacks and continual changes in attack patterns. Therefore, a system that uses an ensemble learning algorithm is proposed. Ensemble learning is a machine learning technique that collects information from weak classifiers and creates one robust classifier with higher accuracy than the individual weak classifiers. The bagging technique is used with a random forest algorithm as a base classifier and compared to three boosting classifiers: Ensemble AdaBoost, Ensemble LPBoost, and Ensemble RUSBoost. The CICID2017 dataset is utilized to develop the proposed IDS to satisfy cloud computing requirements. Each classifier is also tested on various subdatasets individually to analyze the performance. The results show that Ensemble RUSBoost has the best average performance overall with 99.821% accuracy. Moreover, bagging achieves the best performance on the DS2 subdataset, with an accuracy of 99.997%. The proposed model is also compared to a model from the literature to show the differences and demonstrate its effectiveness.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3