Resource allocation scheduling scheme for task migration and offloading in 6G Cybertwin internet of vehicles based on DRL

Author:

Wei Rui12ORCID,Qin Tuanfa12ORCID,Huang Jinbao12ORCID,Yang Ying12,Ren Junyu12ORCID,Yang Lei3

Affiliation:

1. School of Computer and Electronic Information Guangxi University, Xixiangtang Nanning Guangxi People's Republic of China

2. Guangxi Key Laboratory of Multimedia Communications and Network Technology Guangxi University, Xixiangtang Nanning Guangxi People's Republic of China

3. Industrial Internet Research Center Guangxi Academy of Sciences, Xixiangtang Nanning Guangxi People's Republic of China

Abstract

AbstractAs vehicular technology advances, intelligent vehicles generate numerous computation‐intensive tasks, challenging the computational resources of both the vehicles and the Internet of Vehicles (IoV). Traditional IoV struggles with fixed network structures and limited scalability, unable to meet the growing computational demands and next‐generation mobile communication technologies. In congested areas, near‐end Mobile Edge Computing (MEC) resources are often overtaxed, while far‐end MEC servers are underused, resulting in poor service quality. A novel network framework utilizing sixth‐generation mobile communication (6G) and digital twin technologies, combined with task migration, promises to alleviate these inefficiencies. To address these challenges, a task migration and re‐offloading model based on task attribute classification is introduced, employing a hybrid deep reinforcement learning (DRL) algorithm—Dueling Double Q Network DDPG (QDPG). This algorithm merges the strengths of the Deep Deterministic Policy Gradient (DDPG) and the Dueling Double Deep Q‐Network (D3QN), effectively handling continuous and discrete action domains to optimize task migration and re‐offloading in IoV. The inclusion of the Mini Batch K‐Means algorithm enhances learning efficiency and optimization in the DRL algorithm. Experimental results show that QDPG significantly boosts task efficiency and computational performance, providing a robust solution for resource allocation in IoV.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3