Modal ordered shape factors as radar feature set

Author:

Salamah Salem1,Aldhubaib Faisal1ORCID

Affiliation:

1. Electronics Department College of Technological Studies Public Authority for Applied Education (PAAET) Shuwaikh Kuwait

Abstract

AbstractThe characteristic polarisation states form a second layer feature set by reflecting shape attributes about that target, enabling better identification performance of the resonance signature. These shape factors reflect a structure's curvature extent, dihedral degree between corners, and the axial ratio between principal axes by determining two characteristic angles associated with the null polarisation state and a ratio of the optimum maximum and minimum received powers, respectively. However, the accuracy of the shape factors degrades with a poorly estimated resonance signature caused by noise, missing resonance due to occlusion or ambiguity in late time onset. Thus, the authors aim to reduce the effect of these problems using an ensemble average to filter noise and enhance the signal strength, properly selecting a modal order to ensure modal consistency of the signature and decay sum (DS) to select the late time onset properly to avoid missing resonance within the polarisation matrix. Finally, a paradigm of two jetfighters validated the factors' discriminative potential across an azimuth plane of low depression angle. The results showed that a DS around 0.4 improves the estimated factors over most resonance modes and azimuth directions. At most target aspects, the first‐order shape factors consistently predicted a dominant parallel wedge‐shaped structure, while the second‐order shape factors consistently predicted a trough‐shaped structure; finally, the third‐order factors revealed wedge‐shape attributes at forward look aspects but trough‐shaped attributes at backward look aspects.

Funder

Public Authority for Applied Education and Training

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3