Circular synthetic aperture radar sub‐aperture angle information complementation based on azimuth‐controllable generative adversarial network

Author:

Li Bingxuan1ORCID,Ma Yanheng1,Chu Lina1,Li Wei1,Shi Yuanping2

Affiliation:

1. Army Engineering University Shijiazhuang Campus Shijiazhuang China

2. College of Mechanical and Electrical Engineering Shijiazhuang University Shijiazhuang China

Abstract

AbstractA conditional generative adversarial network (CGAN) framework is proposed to address the issue of incomplete circular synthetic aperture radar (CSAR) azimuthal information due to motion errors. Specifically, the authors propose a novel CGAN architecture that can control the azimuth angle for arbitrary angle generation, capable of complementing missing CSAR sub‐aperture information. The network incorporates angular labels for various scenarios and integrates a dynamic region‐aware convolution (DRconv) module. Additionally, to counteract the common challenge of mode collapse in GAN training, a mode seeking regularisation technique is innovativrly introduced into the authors’ loss function. The efficacy of the proposed network is rigorously tested using both the MSTAR dataset and an X‐band SAR dataset. The results demonstrate that the authors’ network can generate high‐fidelity SAR images with controllable azimuths, closely resembling authentic images. Furthermore, the proposed method excels in complementing missing CSAR sub‐aperture information, effectively supplying the lost angular information due to motion errors. A new technical approach for SAR image generation is not only offered but it also has the potential to significantly expand SAR datasets. This advancement is expected to enhance the quality and utility of SAR imagery in applications such as surveillance, reconnaissance, and environmental monitoring.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3