Nighttime wildlife object detection based on YOLOv8‐night

Author:

Wang Tianyu12,Ren Siyu12,Zhang Haiyan12ORCID

Affiliation:

1. School of Information Science and Technology Beijing Forestry University Beijing China

2. Engineering Research Center for Forestry‐oriented Intelligent Information Processing of National Forestry and Grassland Administration Beijing China

Abstract

AbstractMonitoring nocturnal animals in the field is an important task in ecological research and wildlife conservation, but the complexity of nocturnal images and low light conditions make it difficult to cope with traditional image processing methods. To address this problem, researchers have introduced infrared cameras to improve the accuracy of nocturnal animal behaviour observations. Object detection in nighttime images captured by infrared cameras faces several challenges, including low image quality, animal scale variations, occlusion, and pose changes. This study proposes the YOLOv8‐night model, which effectively overcomes these challenges by introducing a channel attention mechanism in YOLOv8. The model is more focused on capturing animal‐related features by dynamically adjusting the channel weights, which improves the saliency of key features and increases the accuracy rate in complex backgrounds. The main contribution of this study is the introduction of the channel attention mechanism into the YOLOv8 framework to create a YOLOv8‐night model suitable for object detection in nighttime images. When tested on nighttime images, the model performs well with a significantly higher mAP (0.854) than YOLOv8 (0.831), and YOLOv8‐night scores 0.856 on mAP_l, which is obviously better than YOLOv8 (0.833) in terms of processing large objects. The study provides a reliable technical tool for ecological research, wildlife conservation and environmental monitoring, and offers new methods and insights for the study of nocturnal animal behaviour.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3