Entropy‐based sampling for efficient training of deep learning on CNC machining dataset

Author:

Sung Mingyu1,Park Chaewon1,Ha Sangjun1,Ha Minse1,Lee Hyeonuk2,Kim Jonggeun2,Kang Jae‐Mo1ORCID

Affiliation:

1. Kyungpook National University Daegu The Republic of Korea

2. Industry applications research division Korea Electrotechnology Research Institute Changwon The Republic of Korea

Abstract

AbstractIn the domain of modern manufacturing, computer numerical control (CNC) milling machines have emerged as instrumental assets. However, the data they generate is of vast amount, but usually contains redundancies and displays consistent patterns, making it inefficient for deep learning training. This paper proposes a novel sampling algorithm tailored for CNC milling machine data, emphasizing both diversity and efficiency. The proposed method leverages the entropy concept from the information‐theoretic perspective to evaluate and enhance data diversity, aiming to achieve efficient learning with high accuracy. This in turn enables to not only facilitates a deeper understanding of CNC data characteristics but also contributes significantly to the optimization of deep learning training processes in the context of CNC milling data.

Funder

Ministry of Science and ICT, South Korea

Publisher

Institution of Engineering and Technology (IET)

Reference4 articles.

1. Time Series Compression Survey

2. Beebe‐Wang N. Ebrahimi S. Yoon J. Arik S.O. Pfister T.:PAITS: pretraining and augmentation for irregularly‐sampled time series. arXiv:2308.13703 (2023)

3. SCINet: time series modeling and forecasting with sample convolution and interaction;Liu M.;Adv. Neural Inf. Process. Syst.,2022

4. Cheng P. Hao W. Dai S. Liu J. Gan Z. Carin L.:CLUB: a contrastive log‐ratio upper bound of mutual information. In:International Conference on Machine Learning pp.1779–1788.Microtome Publishing Brookline MA(2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3