Multi‐layer graphene nanosheets bridging binary aluminium oxide for the synergistic enhancement of thermal conductivity and electrical insulation of silicone resin composite

Author:

Shen Yutan1ORCID,Li Shikun2,Qin Bing1,Zhang Chong2,Li Wenpeng2,Wang Bo2,Zhu Zhanwei3,Liu Chang3

Affiliation:

1. SINOPEC Research Institute of Petroleum Processing Co., Ltd. Beijing China

2. State Key Laboratory of Advanced Power Transmission Technology (State Grid Smart Grid Research Institute Co., Ltd.) Beijing China

3. State Grid Beijing Electric Power Company Beijing China

Abstract

AbstractThe flexible polymer composites usually require high intrinsic thermal conductivity fillers for the applications in thermal management, such as the well‐known graphene, which can, in turn, compromise their electrical insulation properties. Here, the authors developed the silicone resin (SR) composites filled with multi‐layer graphene nanosheets (MGN) and binary alumina (Al2O3), and the microstructure of composites exhibits the dominant skeleton of large‐sized Al2O3 filler and branching of small‐sized Al2O3 fillers features by the size matching effect of optimal binary Al2O3. The introduction of supplementary MGN fillers further increases the face‐to‐face contact probability and bridges the isolated binary Al2O3, which contributes to the high thermal conductivity of 3.0 W·m−1·K−1 under these synergistic effects. The dense and connected ‘Al2O3‐MGN‐Al2O3’ thermal conductive pathway is successfully built, as supported by the numerical simulation and Agari model fitting. Meanwhile, the electrical conductivity caused by MGN can be blocked by the surrounding insulation Al2O3 filler network, exhibiting a high volume resistivity of 1.7 × 1015 Ω · cm. Moreover, the Al2O3/MGN/SR composite films effectively transfer the heat and diminish the hot‐spot temperature by 53.5°C in cooling light emitting diode chip module application.

Funder

China Postdoctoral Science Foundation

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3