CYTOTOXIC PROPERTIES OF NANOSTRUCTURES BASED ON ALUMINUM OXIDE AND HYDROXIDE PHASES IN RELATION TO TUMOR CELLS

Author:

Lozhkomoev A. S.1ORCID,Bakina O. V.1,Kazantsev S. O.1ORCID,Ivanova L. Yu.1ORCID,Avgustinovich A. V.2ORCID,Afanasyev S. G.2ORCID,Spirina L. V.2ORCID,Dobrodeev A. Yu.2ORCID

Affiliation:

1. Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences

2. Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Abstract

Background. Currently, the use of nanoparticles and nanostructures as components of tumor therapy is the subject of numerous scientific articles. To change the parameters of cell microenvironment in presence of nanoparticles and nanostructures is a promising approach to reducing the tumor cell viability. Aluminum hydroxides and oxides have a number of advantages over other particles due to their porous surface, low toxicity, and thermal stability.The purpose of the study was to investigate the influence of the acid-base properties of aluminum hydroxide structures with different phase composition on the tumor cell viability (Hela, mda, pymt, a549, B16F10).Material and methods. Aln/al nanoparticles were used as a precursor for obtaining structures with various phase compositions. The anoparticles were produced by electric explosion of an aluminum wire in a nitrogen atmosphere. Such nanoparticles interact with water at 60 °Ϲ, resulting in formation of porous nanostructures. They are agglomerates of nanosheets with a planar size of up to 200 nm and a thickness of 5 nm. The phase composition of the structures was varied by the calcination temperature. A change in the phase composition of nanostructures led to a change in the acid-base properties of their surface. To estimate the number of acidic and basic centers on the surface of nanostructures, the adsorption of Hammett indicators was used. The amount of adsorbed dyes was determined spectrophotometrically.Results. It was found that the differences in the acid-base characteristics of the surface of the nanostructures led to a change in their antitumor activity. Γ-al2o3 had 6.5 times more basic centers than acidic ones, which determined its ability to exhibit more pronounced antacid properties, i.e. Longer to neutralize protons secreted by tumor cells. This sample had the highest antitumor activity against all tested cell lines.Conclusion. The antitumor activity of synthesized structures was found to be related not only to an increase in the ph of the cell microenvironment, but also to the ability to maintain the alkalinity of the microenvironment for a longer time due to the adsorption of protons released by tumor cells.

Publisher

Tomsk Cancer Research Institute

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3