PREDICTION MODEL OF PITCH ANGLE OF GREENHOUSE ELECTRIC TRACTORS BASED ON TIME SERIES ANALYSIS

Author:

Yang HangxuORCID,Zhou JunORCID,Qi ZezhongORCID

Abstract

The pitch angle of greenhouse tractors changes when operating on rough soil pavement. As a result, the feedback signal lags behind the tractor motion attitude signal, thereby affecting the real-time control of tilling depth. In this study, a pitch angle prediction model of greenhouse electric tractor was proposed based on extended Kalman filter (EKF) and time series analysis to improve the dynamic response speed of tilling depth regulation by providing predictive information for advance control. EKF was used to track the tilling depth of greenhouse electric tractor in real time, and an auto-regressive moving average model (ARMA) was established for the obtained time series data. ARMA (2, 1) was designed as the pitch angle prediction model of greenhouse electric tractors by constructing a simulation model. Inertia measurement unit (IMU) of tractor was used to construct the extended Kalman estimation model of the pitch angle. Actual vehicle tests were carried out under different working conditions. Results show that the estimated values obtained under two operating conditions have a high correlation with the measured values, with correlation coefficients(R) of 0.9504 and 0.9734, root mean square error (RMSE) of 0.2355 and 0.2173, and maximum absolute error (MAE) of 0.1929 and 0.1703, respectively. And ,the MAE and the RMSE of the predicted and measured values of ARMA (2,1) model approximately have the same value under the two conditions, with with the R of 0.9665 and 0.9755, the RMSE of 0.2002 and 0.1812, and the MAE of 0.1578 and 0.1387, respectively. The effectiveness of ARMA (2, 1) as the pitch angle estimation and prediction model of greenhouse electric tractors is verified. This study provides theoretical reference for designing the control law of tilling depth stability in subsequent greenhouse operation. Keywords: Time series, prediction, pitch angle,electric tractor

Publisher

Publicaciones DYNA

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3