AN ENSEMBLE MODEL FOR STATISTICAL MONITORING OF PATTERNS IN BIVARIATE PROCESSES BASED ON MULTIPLE ARTIFICIAL NEURONAL NETWORKS

Author:

HERNANDEZ LOPEZ AIDEE1ORCID,VAZQUEZ LOPEZ JOSE ANTONIO1,LOPEZ JUAREZ ISMAEL1,BAEZA SERRATO ROBERTO1,GONZALEZ CALDERON JOSE AMIR1

Affiliation:

1. PICyT-CIATEC (México), Tecnológico Nacional de México en Celaya, Centro de Investigación y Estudios Avanzados del IPN, Universidad de Guanajuato y Universidad Autónoma de San Luis Potosí (México)

Abstract

Multivariate control graphics detect signals out of control of the process. These signals are special patterns of joint variation, but they do not allow to determine what types of variation patterns take place in the individual variables. The referred problem has been treated through models of pattern recognition (PR) by Artificial Neural Networks (ANN). There are important advances in solving the problem to univariate cases, but not so in multivariate cases. There is no research which affirms that a single ANN can identify a multivariate out-of-control signal and recognize the special variation types of the variables individually. This research presents a model of PR of special variation in bivariate processes, and is based on an organized assembly of different types of ANN which are activated sequentially. With this work, it is possible to obtain a diagnosis of the bivariate process control that simultaneously recognizes the type of variation of the variables involved. This novel model provides the basis of new knowledge about statistical control of bivariate processes by PR through ANN. The model had two stages of training: experimental and industrial. The first one worked with data generated by Montecarlo simulation and the second one with data from a process that performs manufactured operations on metal bars used in the speed system in automobiles. Keywords: Statistical quality control, Pattern recognition, Artificial neural networks, Perceptron, Backpropagation

Publisher

Publicaciones DYNA

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3