MACHINE LEARNING SYSTEM BASED ON COMPUTER VISION FOR THE AUTOMATIC INSPECTION OF MAGNETIC PARTICLES IN MARINE STRUCTURES

Author:

NAVARRO LORENTE PEDRO JAVIER1,MOREO LOPEZ IGNACIO JESUS

Affiliation:

1. Universidad Politécnica de Cartagena (Spain)

Abstract

This work presents a system of supervised learning based on computer vision with the aim of solving the automation of non-destructive inspection tests based on magnetic particles. In this paper, three supervised learning algorithms have been tested: the nearest k neighbor (kNN), a Bayesian classifier (NBC) and the vector support machine (SVM). The developed system has been successfully tested on a set of images extracted during the inspection of magnetic particles on marine structures at the Navantia shipyard in Cartagena. The algorithm that offered the best result was the SVM with a sensitivity of 98.6% and a specificity of 100.0% in the detection of faults by magnetic particles. The vector of characteristics used is composed of a set of 16 elements formed by geometric characteristics and intensity values of the RGB, HSV, and CIE L * a * b * color spaces. The work presents a software application and a hardware system that, using the SVM algorithm, is capable of automatically detecting defects on marine structures during the magnetic particle test. Keywords. Magnetic particles, Non-destructive testing, Machine learning, Computer vision

Publisher

Publicaciones DYNA

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3