INTELLIGENT HEALTH STATUS DETECTION METHOD FOR LOCOMOTIVE FUEL CELL BASED ON DATA-DRIVEN TECHNIQUES

Author:

Tao ShiyongORCID,Chen WeirongORCID,Jiang ShunaORCID,Liu XinyuORCID,Yu JiaxiORCID

Abstract

Main drawbacks of fuel cell systems, namely, high cost, poor reliability, and short lifespan, limit the large-scale commercial application of fuel cell systems. The health status detection of fuel cell systems for locomotives is of great significance to the safe and stable operation of locomotives. To identify the failure modes of the fuel cell system accurately and quickly, this study proposed an intelligent health status detection method for locomotive fuel cells based on data-driven techniques. In this study, the actual test data of a 150-kW fuel cell system for locomotives was analyzed. The t-distributed stochastic neighbor embedding (t-SNE) algorithm was combined with the general regression neural network (GRNN) to intelligently detect the health status of the fuel cell system for locomotives. Specifically, t-SNE was used to process the high-dimensionality and strong coupling raw data of health status, enabling the dimensional reduction of the raw data to reflect essential features. Then, GRNN was used to identify the feature data to achieve the fast and accurate detection of the health status of the fuel cell system. Results show that the proposed method can effectively detect four health conditions, namely, normal state, high inlet coolant temperature, low air pressure, and low spray pump pressure, with a diagnostic accuracy of 98.75%. This study is applicable to the analysis of the actual measurement data of high-power level fuel cell systems and provides a reference for the health status detection of fuel cell systems for locomotives. Keywords: fuel cell system for locomotive; data-driven; general regression neural network; t-distributed stochastic neighbor embedding; health status detection

Publisher

Publicaciones DYNA

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3