AN IMPROVED STRATEGY OF WHEAT KERNEL RECOGNITION BASED ON DEEP LEARNING

Author:

HAN KE1ORCID,Zhang Ning1ORCID,Xie Haoyang1ORCID,Wang Qianlong1ORCID,Ding Wenhao1ORCID

Affiliation:

1. College of Information Engineering of North China University of Water Resources and Electric Power (China)

Abstract

The detection of unsound wheat kernels in traditional wheat purchasing is affected by human factors, resulting in wrong wheat grading. At present, computer-based recognition of wheat kernels has generally low accuracy, and few types of wheat kernels can be recognized. To quickly, accurately, and objectively recognize wheat kernels, this study proposed an improved strategy of wheat kernel recognition method based on deep learning. First, a large number of collected wheat images were labeled, and the wheat kernels were divided into five categories: perfect kernels, broken kernels, impurities, sprouted kernels, and moldy kernels. Second, the improved strategies of VggNet-16, ResNet-34, EfficientNet-b2, DenseNet121, and Vit models were proposed. Based on the two-stage target detection method, the improved network model was used to detect wheat kernels. Moreover, the accuracy of the model was verified by performing comparative tests. Results show that the improved network structure is obviously improved, and the highest accuracy rate of wheat kernel identification is 96%. The precision, recall rate, and F1-score of VggNet-16-W, ResNet-34-W, EfficientNet-b2-W, and DenseNet121-W models are above 97%. This study provides a good reference for rapid and accurate detection of wheat quality. Keywords: deep learning; image recognition; improved strategies; network model; wheat kernels

Publisher

Publicaciones DYNA

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3