MULTIVARIATE STATISTICS FOR ANOMALY DETECTION: APPLICATION IN A TURBOJET

Author:

AMEZQUITA BROOKS LUIS ANTONIO1,SALAZAR MARTINEZ SALMA1,HERNANDEZ ALCANTARA DIANAORCID,VILLAREAL VALDERRAMA FRANCISCO1ORCID,LOBODA IGORORCID,TAKANO DE LA CRUZ LUIS1ORCID

Affiliation:

1. Universidad Autónoma de Nuevo León (Mejico)

Abstract

Although the computational power of embedded systems has increased in recent years, these systems are increasingly being taxed with more tasks. This raises the interest for computationally lean algorithms which are able of rendering process operation more efficient and reliable. This is particularly relevant in the case of flight computers for autonomous aircraft. Fault detection, isolation and identification assist in management strategies to improve both predictive maintenance and operational safety. This article combines a principal component–based representation with multivariate statistics to detect and isolate anomalies in a process. The resulting algorithm is computationally lean and was validated with respect to experimental measurements in a turbojet before and after years of operation. The results show that the developed algorithm is capable of successfully determining the fouling components in the turbojet. Key Words: Fault detection, PCA, multivariate statistics, sensor fusion, process monitoring

Publisher

UK Zhende Publishing Limited Company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3