IMPLEMENTATION OF MACHINE LEARNING TECHNIQUES AND CREATION OF AN ARTIFICIAL NEURAL NETWORK FOR THE PREDICTION OF THE ACADEMIC PERFORMANCE OF STUDENTS IN UNIVERSITY ENVIRONMENTS THAT USE E-LEARNING AND STREAMING

Author:

SANTAMARIA LOPEZ TERESA1ORCID,PATIÑO PEREZ DARWIN1ORCID,GONZÁLEZ RUIZ VICENTE2ORCID,FLORES CARVAJAL LEILA1ORCID

Affiliation:

1. Universidad de Guayaquil (Ecuador)

2. Universidad de Almeria (Spain)

Abstract

This work describes the implementation of machine learning (ML) techniques: Random Forest, Xtreme Boosting Gradient, Support Vector Machine, K-Nearest-Neighbor and Logistic Regression as well as the creation of an artificial neural network (ANN), which were compared to determine the technique that can learn to predict with greater accuracy, the low academic performance of university students, to improve the mechanisms of e-learning and streaming that help them raise academic performance. The e-learning methodology was established for the first time in the late 1990s, however, since the Covid-19 pandemic, it has established itself as the best alternative to traditional education, placing it as a benchmark worldwide. One of the concerns in the university environment where this study was carried out is to be able to determine the impact that virtual teaching has had compared to face-to-face teaching, since there are factors (gender, number of children, sex, age, type of study) that could influence the academic performance of students. Using the classification metrics within the comparative process, it was determined that among the implemented ML techniques, the XGBoost reached 78.4% accuracy, but was surpassed by the artificial neural network (ANN) that learned to predict with 82.4%. of accuracy. Due to the above, the use of the artificial neural network is recommended for the prediction of the academic performance of university students since, in addition, with its massive predictions can be made due to its high processing capacity. Key Words: e-learning, covid19, streaming, academic performance, machine learning, artificial neural networks,

Publisher

Publicaciones DYNA

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3