DIGITAL SAFETY MANAGER: IOT SERVICE TO ASSURE THE SAFE BEHAVIOUR OF MACHINES AND CONTROLS IN THE DIGITAL INDUSTRY

Author:

ILLARRAMENDI REZABAL MIREN1ORCID,IRIARTE ASIER,ARRIETA AGUERRI, AITOR,SAGARDUI MENDIETA GOIURIA2ORCID,LARRINAGA BARRENECHEA FELIX2ORCID

Affiliation:

1. Universidad de Mondragón (España)

2. Universidad de Mondragon (Spain)

Abstract

The digital industry requires increasingly complex and reliable software systems. They need to control and make critical decisions at runtime. As a consequence, the verification and validation of these systems has become a major research challenge. At design and development time, model testing techniques are used while run-time verification aims at verifying that a system satisfies a given property. The latter technique complements the former. The solution presented in this paper targets embedded systems whose software components are designed by state machines defined by Unified Modelling Language (UML). The CRESCO (C++ REflective State-Machines based observable software COmponents) platform generates software components that provide internal information at runtime and the verifier uses this information to check system-level reliability/safety contracts. The verifier detects when a system contract is violated and initiates a safeState process to prevent dangerous scenarios. These contracts are defined by internal information from the software components that make up the system. Thus, as demonstrated in the tested experiment, the robustness of the system is increased. All software components (controllers), such as the verifier, have been deployed as services (producers/consumers) of the Arrowhead IoT platform: the controllers are deployed on local Arrowhead platforms (Edge) and the verifier (Safety Manager) is deployed on an Arrowhead platform (Cloud) that will consume controllers on the Edge and ensure the proper functioning of the plant controllers. Keywords: run-time monitoring, robustness, software components, contracts, software models, state machines

Publisher

Publicaciones DYNA

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3