SECURE MULTIPARTY COMPUTATION FOR PREDICTIVE MAINTENANCE: VALIDATION OF SCALE-MAMBA TOOL IN TERMS OF ACCURACY AND EFFICIENCY

Author:

Gamiz Ugarte Idoia1ORCID,LAGE SERRANO OSCAR2ORCID,LEGARRETA SOLAGUREN LEIRE1ORCID,Regueiro Senderos Cristina2ORCID,JACOB TAQUET EDUARDO1ORCID,SECO AGUIRRE IÑAKI2ORCID

Affiliation:

1. UPV/EHU (Spain)

2. Tecnalia (Spain)

Abstract

Privacy is a booming sector and there is an increasing number of limitations that hinder the centralization of data coming from different sources. Nowadays, having data provides value and an advantage over the rest, since it allows the performance of a wider and more generalizable analysis. Secure Multiparty Computation (SMPC) is a cryptographic technique that allows performing computations with data from different parties while maintaining the privacy of the data and avoiding centralization. This work focuses on the SCALE-MAMBA framework for conducting SMPC and the main objective is its validation in terms of types of operations, the accuracy of the results and execution times. A use case that is directly related to the industry is used, consisting of a manufacturer who wants to implement predictive maintenance on a machine whose data is collected by different users. Two types of scenarios are presented in order to analyze the results, obtaining different conclusions for each of them. On the one hand, the first scenario collects the use cases in which the aim is to compute statistics or simple calculations with data in common. On the other hand, the second scenario focuses on the training of Machine Learning (ML) algorithms. The original contribution of this work includes the implementation of these codes within the Mamba language, their application to concrete data, and the comparison of the results with those that would be obtained by performing it in an insecure way, centralizing the data, and using R or Python. The major limitations encountered are around execution times, which might be acceptable for many use cases in the first scenario, but are prohibitive for many of the techniques used in real ML training. Keywords: cryptography, security, privacy, predictive maintenance, Privacy-Preserving Computation, Privacy-enhancing technologies, Secure Multiparty Computation, SCALE-MAMBA, machine learning, data analysis, prediction, classification, accuracy, efficiency.

Publisher

Publicaciones DYNA

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3