Statistical Modeling for Forecasting Fertilizer Consumption in India

Author:

Borkar PremaORCID

Abstract

Fertilizers have contributed significantly to increased agricultural yields, particularly for cereal crops and they will still be an important part of the science-based farming that is needed to feed the world's growing population. Fertilizers replenish the soil nutrients lost by the harvested crops, promote the use of high-yielding cultivars and boost biomass in tropical soils that are deficient in nutrients. In this study, data on fertilizer consumption in India was gathered from Agricultural Statistics at a Glance from 1950-51 to 2020-21 and utilized to fit the ARIMA model and forecast future usage. Forecasting has been done using the Box-Jenkins ARIMA approach. The ARIMA model is the most popular and widely applied forecasting model for time series data. The data was calculated using autocorrelation and partial autocorrelation functions. R programming software was used to estimate model parameters. The performance of the fitted model was evaluated using various goodness of fit criteria, such as AIC, BIC and MAPE. Empirical results revealed that the ARIMA (1,2,1) model was best suited to forecasting India's future total fertilizer use. Similarly, the ARIMA model was fitted for nitrogen, phosphorus, and potassium consumption in India independently. Forecasts from 2021-22 to 2030-31 are calculated using the chosen model. By 2030-31, total fertilizer use is predicted to reach 32,058.55 thousand tonnes. Policymakers should preferably base their judgments on reliable forecasts in order to tighten policies and achieve outcomes. Predicting future events using an appropriate time series model will assist policymakers, marketing strategies in making decisions related to export/ import and developing appropriate fertilizer consumption strategies.

Publisher

Horizon E-Publishing Group

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3