Biosorption of Mn (II) by Spirogyra verrucosa collected from Manganese Mine Water

Author:

Bansod Shailesh Rambhau,Nandkar P B

Abstract

Mining industries frequently generates acid mine drainage (AMD) either by its operating or abandoned mines which are often characterized by an elevated levels of certain heavy metals, sulphate, low pH and some other toxic impurities in mine water creates environmental and ecological problems. Present study planned to suggest role of alga Spirogyra verrucosa in Manganese (Mn) removal by biosorption process from the mine water of Manganese mines of Nagpur District, Vidarbha Region, Maharashtra. The biosorption of Mn(II) ions from aqueous solution by using dead green algal (S.verrucosa) biomass was investigated by studying effect of pH, temperature, quantity of biosorbent, contact time as well as initial metal ion concentration. The optimized values obtained with respect to these parameters clearly indicates that pH 5, temperature 30°C, biosorbent quantity 1.0 gm/l, contact time 120 min. and initial metal ion concentration 50mg/l were the basic requirement for the biosorption of Mn(II) ions by dead algal biomass. Also, the biosorption kinetic and isotherm modeling applied to the equilibrium data for biosorption of Mn(II) ions onto alga reveals the fitness of the pseudo-second-order rate expression (R2=0.994) as well as the suitability of Langmuir (R2=0.859) and Freundlich (R2=0.761) isotherm models with an indication of the applicability of this metal ion-dried algal system for removal of Mn(II) ions in a monolayer biosorption as well as heterogenous surface conditions. However, comparatively biosorption equilibrium was better described by Langmuir isotherm model with monolayer biosorption capacity of S.verrucosa biomass 21.80 mg/g. Also, the maximum removal 40.66 mg/g (80.20%) of Mn(II) ion by alga under optimized conditions promises the potential use in mine water treatment technology.

Publisher

Horizon E-Publishing Group

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3