Abstract
The extensive use of glyphosate (N-(phosphonomethyl) glycine) herbicide in agriculture is accompanied by the risk of environmental contamination of aquatic ecosystems. In this study, the effects of glyphosate at different concentrations (50–500 µg ml-1) on three Chlorella species including Chlorella ellipsoidea, Chlorella sorokiniana and Chlorella vulgaris especially in relation to the biomass, pigment contents and photosynthetic efficiency were assessed. After treatment for 24 hr, the acute toxicity results showed that C. vulgaris (IC50 = 449.34 ± 6.20 µg ml-1) was more tolerant to glyphosate than C. ellipsoidea (IC50 = 288.23 ± 23.53 µg ml-1) and C. sorokiniana (IC50 = 174.28 ± 0.50 µg ml-1). After a 72-hr chronic toxicity treatment with glyphosate, glyphosate concentrations decreased to 400–500 µg ml-1 in C. ellipsoidea, 200–300 µg ml-1 in C. sorokiniana and 200–500 µg ml-1 in C. vulgaris respectively. During 24-hr acute toxicity exposure to glyphosate, the pigment contents and maximum quantum efficiency of photosystem II (Fv/Fm) decreased as the concentration of glyphosate increased. Overall, the biomass, pigment contents and photosynthetic efficiency presented a high positive correlation. It is worthwhile to mention that our study provides detailed information on the toxicity and sensitivity of these Chlorella species to glyphosate.
Publisher
Horizon E-Publishing Group
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献