Effect of combination of light and drought stress on physiology and oxidative metabolism of rice plants

Author:

Chatterjee AtreyeeORCID,Dey TanmayORCID,Galiba GáborORCID,Kocsy Gábor KocsyORCID,Dey NarottamORCID,Kar Rup KumarORCID

Abstract

The realized productivity of crop plants is generally lower than the potential productivity due to the influence of one or more external stresses (biotic and abiotic). Simultaneous occurrence of combination of abiotic stresses, which is more common under field condition, results in compounded effect on functional processes. Main focus of the present work is the combined effect of drought and light (irradiance) on rice plants. Potted seedlings of four selected rice lines (viz., IR36, N22, CRD40 and Bhootmuri) were exposed to three different levels of drought stress (50%, 25%, 12.5% of water) along with control (100%) in combination with three different light intensities (high, medium and low) during experimental period. After 7 days of stress, plant height and relative water content (RWC) were relatively low while root length increased with increasing water stress level and light intensity. Protein content increased with increasing water stress and light intensity, while chlorophyll level was higher at higher light intensities. Malondialdehyde (MDA) content, indicative of lipid peroxidation, increased with water stress only at high light intensities. Superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX) activities increased with combined drought and light stress level, whereas catalase (CAT) activity was higher at higher light intensities. On the other hand, superoxide (O2.-) production, but not hydrogen peroxide (H2O2) production was higher with increasing water stress and light intensity. It appears that light-induced ROS (O2.-) production under drought condition provoked oxidative stress, though a potential mechanism of tolerance was apparent through antioxidant system.

Publisher

Horizon E-Publishing Group

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3