Surface modification via alginate-based edible coating for enhanced osmotic dehydration mass transfer of ginger slices

Author:

Hissham Muhammad HafizORCID,Kamarudin Khadijah HilmunORCID,Ramli AimaORCID,Lani Mohd NizamORCID,Isa Mohd Ikmar Nizam MohamadORCID,Salim Nora Salina MdORCID

Abstract

Ginger has a high moisture content, which makes it highly susceptible to spoilage. Therefore, the shelf life can be extended through drying. In the drying process, osmotic dehydration is applied as pre-treatment due to its simple operation and energy-saving process for removing moisture from food. However, large solute gain during the osmotic dehydration has become the major challenge of this process as it has a negative impact on the final product. The edible coating is the key step to circumventing this issue. Alginate is a potential candidate for the coating material to enhance the mass transfer kinetics of the osmotic dehydration process. This study investigated the surface modification of ginger slices caused by the cross-linker calcium chloride and plasticizer glycerol on alginate coating using a Scanning Electron Microscope. Furthermore, the kinetics of water loss and solute gain were evaluated and modelling aspects were conducted. It was observed that the surface roughness of ginger coated with a combination of alginate, glycerol and calcium ions has reduced. This facilitated the mass transfer process, which was observed to have a high water loss and a lower solute gain. The Peleg model presented the best fitting model of mass transfer kinetics during osmotic dehydration of ginger slices. From this work, it can be deduced that alginate-based coating can be a promising pre-treatment step in the osmotic dehydration process.

Publisher

Horizon E-Publishing Group

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3