Variation in oxidative defense system and physiological traits in Maize under drought stress

Author:

Shahimoghadam MonirehORCID,Asghari AliORCID,Moharramnejad SajjadORCID,Dehghanian ZahraORCID,Singh Sandeep KumarORCID,Sivalingam Krishna MoorthyORCID,Marisennayya SenapathyORCID

Abstract

The study included the role of key metabolites involved in oxidative defense, and osmotic adjustment under water stress is still undiscovered. We have evaluated whether antioxidant potential could be nominated as a potential marker of drought resistance in three maize hybrids (SC01, SC703, and SC720). Underwater deficiency in all maize hybrids decreased significantly compared to control samples in grain yield, photosynthetic pigments, and phenolic compounds. In contrast, proline and glycine betaine (GB) significantly increased. In contrast, a significant increase (p<?0.05) was detected in the lipid peroxidation indicator of malondialdehyde (MDA). The hydrogen peroxide (H2O2) and total soluble proteins remained unaffected under drought stress in the three maize hybrids. Electrophoretic investigations attributed three, two, and one isoforms, respectively, to peroxidase (POX), superoxide dismutase (SOD), and catalase (CAT). In the studied maize hybrids, SOD isoforms, including Fe-SOD, Cu/Zn-SOD, and Mn-SOD, appeared on the 8% slab polyacrylamide gels. The water stress decreases Mn-SOD, Cu/Zn-SOD, and Fe-SOD activities in all three hybrids. Further, POX1, POX2, and CAT activities decreased in SC01 and SC703, while they increased in SC720 under water deficit stress. In all maize hybrids, oxidative stress from water limitation leads to significant changes in the enzymatic/non-enzymatic antioxidants and main organic osmolytes. Based on the current study's findings, we believe that Cu/Zn-SOD activity, proline, and photosynthetic pigments might be used as biochemical indicators of water stress tolerance.

Publisher

Horizon E-Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3