Establishment of in planta transformation protocol of tomato (Solanum lycopersicum L.) through antiporter gene for improved salinity tolerance

Author:

Datta AnamikaORCID,Ferdous Manzur-E-MohsinaORCID,Islam AparnaORCID

Abstract

Tomato stands as the world’s third most consumed vegetable, but its production has been suffering due to climate vulnerability, notably for saline sensitivity. Despite its economic importance, developing salinity tolerant tomato has not been prioritized lately. Current study was aimed to establish a simple and efficient Agrobacterium-mediated in planta transformation protocol to transform Na+/H+ antiporter gene into 5 Bangladeshi tomato varieties, namely BARI tomato 2, BARI tomato 3, BINA tomato 2, BINA tomato 3 and Bahar, to improve their salt tolerance, through optimization of crucial transformation factors like optical density, infection time, co-cultivation period etc. Two vectors were constructed by cloning Na+/H+ antiporter gene from Arabidopsis (pK7WG2_AtNHX1_1.6) and Rice (pK7WG2_OsNHX1_1.6) individually to gateway vector pENTR/D-TOPO and electroporated to Agrobacterium while another vector pBI121 was used as control. Non-pricked seeds were found optimum for achieving more than 90% efficiency for GUS expression and germination percentages under conditions of OD600 1.1-1.4 with 30 min of infection time followed by 24 hrs co-cultivation period during transformation using the 3 vectors. Transformed plantlets were screened through resistance to Kanamycin 50 mg/l in germination medium while Cefotaxime 100 mg/l was applied to prevent Agrobacterium overgrowth during co-cultivation. Tolerance of 100 mM NaCl for 14 days has been observed in putative transformants in Leaf Disc Bioassay. No significant morphological changes were observed during the acclimatization of putatively transformed plantlets. This established protocol is novel and can efficiently produce genotype-independent transgenic tomato plants obviating intervening tissue culture. Hence, this study provides scope for climate-resilient crop improvement to ensure nutritional security.

Publisher

Horizon E-Publishing Group

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3