Cleaning up black carbon using plant strategies

Author:

Samudro HaridaORCID,Samudro GanjarORCID,Mangkoedihardjo SarwokoORCID

Abstract

Black carbon aerosol is able to absorb solar radiation and the earth's surface, which results in warming of the air. In addition, aerosols that are directly absorbed through inhalation can have a negative impact on human health. Meanwhile, the ability of air to reduce the level of pollution is the deconcentrating of pollutants through abiotic mechanisms in the form of distribution, dilution, precipitation and washing when it rains. To strengthen the abiotic approach, this study aims to develop a biotic strategy by preparing plants capable of deconcentrating black carbon. The research method is based on a literature review, which specifically addresses the issue of black carbon. Literature is collected from the Mendeley platform and enriched through resource searches in open access journals. The results obtained are cleaning priorities for the closest source of aerosol generation, plant placement in priority areas, selection of plant species, intensification of vegetation quality and management of land cover extensification. The contribution of biotic strategies and phytoremediation pathways enhances the aerosol cleaning process. Plant maintenance and regeneration determine the sustainability of aerosol phytoremediation.

Publisher

Horizon E-Publishing Group

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3