Field-level rice yield estimations under different farm practices using the crop simulation model for better yield

Author:

Mandapati RojaORCID,Gumma Murali KrishnaORCID,Metuku Devender Reddy,Maitra SagarORCID

Abstract

Crop yield estimation is essential for decision-making systems and insurance policy makers. Numerous methodologies for yield estimation have been developed, encompassing crop models, remote sensing techniques, and empirical equations. Each approach holds unique limitations and advantages. The primary aim of this study was to assess the accuracy of the DSSAT (Decision Support System for Agro Technology Transfer) model in predicting rice yields and LAI (Leaf Area Index) across various management methods. Additionally, the study sought to identify the optimal management practice for attaining higher yields. Crop models facilitate the expeditious evaluation of management strategies aimed at improving crop yield and analyzing the balance between production, resource efficiency, and environmental impacts. The study region selected for analysis is Karimnagar district of Telangana state. DSSAT has been chosen as the preferred tool due to its high efficiency in evaluating crop yield. The model's simulated yield was compared to the observed yield obtained from crop-cutting experiments. The results indicate a correlation of 0.81 and 0.85 between observed and simulated yields, as well as between model LAI and yield. An observation was made regarding a discrepancy between predicted and actual yields, which can be attributed to biotic stress. However, it should be noted that the current model does not account for this factor. The observed average yield was 5200 kg ha-1, whereas the projected yield was 5400 kg ha-1. The findings indicate that the model's performance is influenced by both the timing of sowing and the amount of nitrogen applied. The findings indicate that the DSSAT model has demonstrated a high level of accuracy in predicting both yields and leaf area index (LAI) across various management strategies. This study showcases the potential use of crop simulation models as a technology-driven tool to identify the most effective management strategies for rice production.

Publisher

Horizon E-Publishing Group

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3