Priming-mediated triggering of antioxidative response to induce drought tolerance in Maize (Zea mays L.)

Author:

Thongbam SatyajyotiORCID,Sinam VikasORCID,Mentada Bala Abhinav SaiORCID,Kalangutkar Akshaya MahadevORCID,Siddique AnaytullahORCID

Abstract

Drought is a well-known issue in plants and it occurs when plants do not receive enough water to meet their requirements. Hence it alters the metabolic process of the plant, consequently reducing the yield. To overcome the loss of yield under prevailing situations, triggering of the antioxidative defense system is required which can mitigate the impact of drought on plants. The priming chemicals KNO3, Mg(NO3)2 and GA3 were evaluated with hydro-priming to know the mitigative response of priming against drought-induced stress in Maize plants. The morpho-physiological and biochemical parameters were used to evaluate the impact of priming-mediated triggers on the antioxidative response. The results of this work indicate that leaf area index (LAI), crop growth rate (CGR, mg g-1 day-1), total chlorophyll, and chl‘a’ (mg g-1) were recorded maximum in T5 (Mg(NO3)2, 10 mM) while chl ‘b’ in T4 (Mg (NO3)2, 7 mM). The maximum Membrane Stability Index (MSI %) and Membrane Injury Index (MII%) were recorded in T5 and T0 (Control). The osmoregulatory compound proline content (µg g-1) and antioxidative enzyme catalase (nm H2O2 mg-1 min-1) were detected in significantly highest quantity in T3 (KNO3, 15 mM) while the least amount of malondialdehyde (MDA nm g-1) was found under the same treatment. The correlation studies amongst all the parameters reflected that MII % and MDA content (MDA nm g-1) negatively correlated with the remaining parameters studied. This study has reflected that out of all the sources of priming treatments, KNO3 in 15 mM and Mg(NO3)2 in 10 mM has the potential to trigger the antioxidative defense mechanism to mitigate the response of drought in Maize.

Publisher

Horizon E-Publishing Group

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3