Assessment of genotype by year interaction for yield components and physiological traits in cotton under drought stress using multivariate analysis and genetic parameters

Author:

Yehia Waleed Mohamed BassunyORCID,El-Hashash Essam FathyORCID,Al-Qahtani Salem MesfirORCID,Al-Harbi Nadi AwadORCID

Abstract

The objective of this study was to identify genotype high yielding and drought-tolerant, by understanding the interaction GY pattern for yield, yield components and physiological traits in 24 cotton genotypes over five years under drought stress conditions using AMMI analysis, genetic parameters and multivariate analysis. All assessed traits were significantly impacted by genotypes and GY interaction using the AMMI model, with the exception of chlorophyll b by GY interaction. Meanwhile, seed cotton yield/plant, number of open bolls/plant, lint percentage, lint cotton yield/plant, and number of fruiting branches/plant were significantly affected by the year's factor. High BSH coupled with high GAM% was observed for all studied traits, indicating the heritability due to additive type of gene action and, the importance of these genotypes and the possibility of effective selection for drought-tolerant genotype development. A statistically significant correlation was discovered between cotton yield and most investigated traits under drought stress conditions. Direct selection can be done through these traits based on genetic parameters and Pearson's correlations analyses, which will be effective for drought tolerance and enhancing cotton yield. The results of our study's Pearson's correlation analysis, PCA and cluster analysis could be relevant and appropriate for studying drought tolerance mechanisms and cotton yield improvement. According to PCA and cluster analysis, the genotypes G20 and G19 followed by G5, G4 and G21 genotypes showed the best performance in response to drought stress regarding the yield, yield components and physiological-related traits. The previous genotypes could be used in future cotton breeding efforts in Egypt to promote drought tolerance, improve cotton productivity, and sustainable production during drought stress conditions.

Publisher

Horizon E-Publishing Group

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3