Abstract
The rice panicle, a pivotal reproductive structure, signifies the transition from vegetative to reproductive growth in plants. Comprising components such as the rachis, primary and secondary branches, seed quantities and branch lengths, panicle architecture profoundly influences grain production. This study delves into the diversity of panicle architecture traits and scrutinizes variability parameters across 69 distinct rice genotypes. Our findings underscore substantial variations in panicle architecture traits among genotypes. Particularly noteworthy are traits with the highest coefficient of variation (CV%), encompassing the count of secondary branches, single plant yield, productive tillers per plant, seeds per secondary branch and panicle weight. Correlation analysis reveals robust positive connections between panicle weight, the number of filled grains per panicle, 1000-grain weight and single plant yield. The number of secondary branches exhibits the most substantial phenotypic coefficient of variation (PCV%) at 47.14%, accompanied by a genotypic coefficient of variation (GCV%) of 43.57%. Traits such as days to 50% flowering, plant height and number of filled grains per panicle manifest high heritability (97.04%, 91.24% and 76.22% respectively) and notable genetic advancement (23.11%, 39.62% and 47.49%). The principal component analysis identifies the primary component (PC1) as the principal contributor to variance. Biplot analysis accentuates positive correlations between attributes like the number of filled grains per panicle, panicle length, plant height, primary branch count, panicle weight, seeds per primary branch and the number of secondary branches with single plant yield. By employing Mahalanobis D2 statistics, the classification of genotypes into 6 distinct clusters reveals clusters III and IV as distinguished by their significant inter-cluster and intra-cluster distances. This comprehensive analysis unveils the potential for harnessing panicle architecture traits to enhance grain production and advances our comprehension of intricate relationships within diverse rice genotypes.
Publisher
Horizon E-Publishing Group
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics