Exogenous gibberellin improves the yield and quality of basil (Ocimum basilicum L.) and chervil (Anthriscus cerefolium L.) plants grown under salinity stress conditions

Author:

El haddaji HamzaORCID,Akoudad MustaphaORCID,Skalli AliORCID,Moumen AbdelmajidORCID,Bellahcen SaidORCID,Maach MostaphaORCID,Rahhou AbderrahmaneORCID,Baghour MouradORCID

Abstract

Gibberellins play a crucial role as plant hormones in the regulation of various aspects of plant growth and development. They are involved in processes such as seed germination, breaking plant and bud dormancy, and counteracting the effects of auxin. Additionally, gibberellins promote leaf expansion, stimulate stem elongation, and contribute to flower development and fruit set. The objective of this study was to investigate the effects of gibberellic acid (GA3) treatments (T0: 0 ppm, T1: 1 ppm, and T2: 10 ppm) on the growth regulation and physiological parameters of basil and chervil plants under salinity stress conditions (150 mM NaCl). The study explored various growth outcomes and biochemical parameters, including chlorophyll, proteins, soluble sugars, proline, and nitrate. The results indicate that the application of gibberellic acid alleviated the adverse effects of high salinity and resulted in enhanced biomass production. In comparison to the control treatment, foliar surface values for basil and chervil increased by 15% and 35%, respectively, in T2. Moreover, root lengths of basil and chervil reached their highest values in T2, showing a 16% increase for basil and a 33% increase for chervil. Carotenoid levels were positively influenced by GA3 treatments, reaching high concentrations in T2, exceeding T0 levels by 41% for basil and 83% for chervil. Additionally, under T2 treatment, protein and glucose levels increased by factors of 2.7 and 1.7, respectively, in basil plants and by factors of 2.1 and 1.7, respectively, in chervil plants. The application of gibberellic acid led to a 33% reduction in proline content for basil and a 27% reduction for chervil compared to the T0 treatment.

Publisher

Horizon E-Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3