Screening of salt stress in the overexpressed type of Arabidopsis thaliana (L.) Heynh. for the identification of significant hub genes using a systems biology approach

Author:

Amjad ElhamORCID,Sokouti BabakORCID,Asnaashari SolmazORCID,Dastmalchi SiavoushORCID

Abstract

Worldwide, it is known that abiotic and biotic stresses can affect the production of crops by a declining trend. To control the situation, SnRK2 (a subfamily 2 of SNF1-related protein kinase) overexpression levels can induce salt tolerance. This study used a dataset for 2 types of Arabidopsis thaliana including the wild and PtSnRK2.7 overexpressed in mock and salt conditions to compare and identify the salt stress-responsive genes. A computational systems biology approach was employed to identify the differentially expressed genes and determine their mechanisms in terms of molecular functionalities, cellular components, KEGG enrichment pathways and plant ontology analyses. The results indicate that the 15 genes identified for PtSnRK2.7 overexpressed type in mock against salt conditions were upregulated (AT1G19180 and AT2G23150 were downregulated) and related to various environmental stresses. Furthermore, 8 out of 15 identified genes were downregulated for the wild type exposed to salt stress and the rest were upregulated. And, the only upregulated gene found differentially expressed between wild and overexpressed types in salt stress conditions was AT4G15110. In contrast, the other two AT1G15010 and AT4G19430 were downregulated and involved in transient stress and inactivation of chloroplast, respectively. Taken together, it has been shown that A. thaliana PtSnRK2.7 overexpressed type can resist salt stress. Finally, more experimental studies and computational systems biology methodologies are needed to reveal and confirm the responsive gene for salt stress in A. thaliana.

Publisher

Horizon E-Publishing Group

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3