Luminance Calibration and Linearity Correction Method of Imaging Luminance Measurement Devices

Author:

Czyżewski DariuszORCID,Fryc IrenaORCID

Abstract

This paper presents that the opto-electrical characteristic of a typical CCD based digital camera is nonlinear. It means that digital electric signal of the camera's CCD detector - is not a linear function of the luminance value on camera's lens. The opto-electrical characteristic feature of a digital camera needs to be transformed into a linear function if this camera is to be used as a luminance distribution measurement device known as Imaging Luminance Measurement Device (ILMD). The article presents the methodology for obtaining the opto-electrical characteristic feature of a typical CCD digital camera and focuses on the non- linearity correction method. Full Text: PDF ReferencesD. Wüller and H. Gabele, "The usage of digital cameras as luminance meters," in Digital Photography III, 2007, p. 65020U CrossRef P. Fiorentin and A. Scroccaro, "Detector-Based Calibration for Illuminance and Luminance Meters-Experimental Results," IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 5, pp. 1375-1381, 2010 CrossRef M. Shpak, P. Kärhä, G. Porrovecchio, M. Smid, and E. Ikonen, "Luminance meter for photopic and scotopic measurements in the mesopic range," Meas. Sci. Technol, vol. 25, no. 9, p. 95001, 2014, CrossRef P. Fiorentin, P. Iacomussi, and G. Rossi, "Characterization and calibration of a CCD detector for light engineering," IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 1, pp. 171-177, 2005, CrossRef I. Fryc and E. Czech, "Application of optical fibers and CCD array for measurement of luminance distribution," in Proc. SPIE 5064, Lightmetry 2002: Metrology and Testing Techniques Using Light, 2003, pp. 18-21, CrossRef I. Fryc, "Accuracy of spectral correction of a CCD array for luminance distribution measurement," in Proc. SPIE 5064, Lightmetry 2002: Metrology and Testing Techniques Using Light, 2003, pp. 38-42, CrossRef I. Fryc, "Analysis of the spectral correction errors of illuminance meter photometric head under the influence of the diffusing element," Optical Engineering, vol. 40, no. 8, pp. 1636-1640, 2001. CrossRef D. Czyzewski, "Monitoring of the subsequent LED lighting installation in Warsaw in the years 2014-2015," in Proceedings of 2016 IEEE Lighting Conference of the Visegrad Countries, Lumen V4 2016, 2016, pp. 1-4, CrossRef M. Sielachowska, D. Tyniecki, and M. Zajkowski, "Measurements of the Luminance Distribution in the Classroom Using the SkyWatcher Type System," in 2018 VII. Lighting Conference of the Visegrad Countries (Lumen V4), 2018, pp. 1-5, CrossRef W. Malska and H. Wachta, "Elements of inferential statistics in a quantitative assessment of illuminations of architectural structures," in 2016 IEEE Lighting Conference of the Visegrad Countries (Lumen V4), 2016, pp. 1-6, CrossRef T. Kruisselbrink, R. Dangol, and A. Rosemann, "Photometric measurements of lighting quality: An overview," Building and Environment, vol. 138, pp. 42-52, 2018. CrossRef A. Borisuit, M. Münch, L. Deschamps, J. Kämpf, and J.-L. Scartezzini, "A new device for dynamic luminance mapping and glare risk assessment in buildings," in Proc. SPIE 8485. Nonimaging Optics: Efficient Design for Illumination and Solar Concentration IX, 2012, vol. 8485, p. 84850M, CrossRef I. Lewin and J. O'Farrell, "Luminaire photometry using video camera techniques," Journal of the Illuminating Engineering Society, vol. 28, no. 1, pp. 57-63, 1999, CrossRef D. Czyżewski, "Research on luminance distributions of chip-on-board light-emitting diodes," Crystals, vol. 9, no. 12, pp. 1-14, 2019, CrossRef K. Tohsing, M. Schrempf, S. Riechelmann, H. Schilke, and G. Seckmeyer, "Measuring high-resolution sky luminance distributions with a CCD camera," Applied optics, vol. 52, no. 8, pp. 1564-1573, 2013. CrossRef D. Czyzewski, "Investigation of COB LED luminance distribution," in Proceedings of 2016 IEEE Lighting Conference of the Visegrad Countries, Lumen V4 2016, 2016, pp. 1-4, CrossRef A. de Vries, J. L. Souman, B. de Ruyter, I. Heynderickx, and Y. A. W. de Kort, "Lighting up the office: The effect of wall luminance on room appraisal, office workers' performance, and subjective alertness," Building and Environment, 2018 CrossRef D. Silvestre, J. Guy, J. Hanck, K. Cornish, and A. Bertone, "Different luminance- and texture-defined contrast sensitivity profiles for school-aged children," Nature. Scientific Reports, vol. 10, no. 13039, 2020, CrossRef H. Wachta, K. Baran, and M. Leśko, "The meaning of qualitative reflective features of the facade in the design of illumination of architectural objects," in AIP Conference Proceedings, 2019, vol. 2078, no. 1, p. 20102. CrossRef CIE, "Technical raport CIE 231:2019. CIE Classification System of Illuminance and Luminance Meters.," Vienna, Austria, 2019. CrossRef DIN, "Standard DIN 5032-7:2017. Photometry - Part 7: Classification of illuminance meters and luminance meters.," 2017. DirectLink CEN, "EN 13032-1:2004. Light and lighting - Measurement and presentation of photometric data of lamps and luminaires - Part 1: Measurement and file format," Bruxelles, Belgium., 2004. DirectLink CIE, "Technical raport CIE 231:2019. CIE Classification System of Illuminance and Luminance Meters," Vienna, Austria, 2019 CrossRef E. Czech, D. Czyzewski, "The linearization of the relationship between scene luminance and digital camera output levels", Photonics Letter of Poland 13, 1 (2021). CrossRef

Publisher

Photonics Society of Poland

Subject

Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3