Histological, histochemical and ultrastructural study of slipped capital femoral epiphysis

Author:

Tresoldi I.1,Modesti A.1,Dragoni M.1,Potenza V.2,Ippolito E.2

Affiliation:

1. Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 12, Rome, 00133, Italy

2. Department of Orthopaedics and Traumatology, University of Rome “Tor Vergata”, Viale Oxford 81, Rome, 00133, Italy

Abstract

Purpose The purpose of our study was to investigate the histological, histochemical and ultrastructural aspects of the proximal femoral growth plate in slipped capital femoral epiphysis (SCFE). Methods Eight core biopsies of the proximal femoral growth plate were performed during in situ epiphysiodesis in patients with SCFE that was at the pre-slipping stage in two cases and at the mild slipping stage (Southwick angle < 30°) in six cases. After fixation, the specimens were processed for either histological or histochemical or ultrastructural studies. Results The proximal femoral growth plate was thicker than normal in the SCFE cases, and the 3:1 ratio between the thickness of the resting zone and the other zones of the plate was reversed. Chondrocytes of the proliferating, maturation, hypertrophic and degenerating zones were arranged in large clusters rather than in columns, which were separated by loose fibrillary septae that appeared moderately alcian blue positive and metachromatic. The collagen fibrils of the longitudinal septae were uniformly thin, measuring about 200 Å, whereas in the normal plate collagen fibrils were in the range of 300 to 1200 Å in thickness. Chondrocytes were elongated and smaller than normal, with a dark cytoplasm. In the degenerating zone, mineralisation of the longitudinal and transversal septae was scanty and enchondral ossification was impaired, with a few small osteoblasts forming thin bone trabeculae on the cartilage septae of the degenerating zone. Conclusion In SCFE, the proximal femoral growth plate undergoes several histological, histochemical and ultrastructural changes that precede slipping of the epiphysis since they are already present at a pre-slipping stage of the disease. The loss of solidity of the extracellular matrix and the disarrangement of the normal architecture of the physis very likely cause the consequent slipping of the proximal femoral epiphysis. SCFE aetiology remains unknown.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3