Hypoxia-inducible factor (HIF): how to improve osseointegration in hip arthroplasty secondary to avascular necrosis in sickle cell disease

Author:

George Akintunde1,Ellis Marianne1,Gill Harinderjit Singh2

Affiliation:

1. Centre for Integrated Bioprocessing Research, Department of Chemical Engineering, University of Bath, Bath, UK

2. Department of Mechanical Engineering, University of Bath, Bath, UK

Abstract

Many studies in the literature have been carried out to evaluate the various cellular and molecular processes involved in osteogenesis. Angiogenesis and bone formation work closely together in this group of disorders. Hypoxia-inducible factor (HIF) which is stimulated in tissue hypoxia triggers a cascade of molecular processes that helps manage this physiological deficiency. However, there still remains a paucity of knowledge with regard to how sickle cell bone pathology, in particular avascular necrosis, could be altered when it comes to osseointegration at the molecular level. Hypoxia-inducible factor has been identified as key in mediating how cells adapt to molecular oxygen levels. The aim of this review is to further elucidate the physiology of hypoxia-inducible factor with its various pathways and to establish what role this factor could play in altering the disease pathophysiology of avascular necrosis caused by sickle cell disease and in improving osseointegration. This review article also seeks to propose certain research methodology frameworks in exploring how osseointegration could be improved in sickle cell disease patients with total hip replacements and how it could eventually reduce their already increased risk of undergoing revision surgery. Cite this article: EFORT Open Rev 2019;4:567-575. DOI: 10.1302/2058-5241.4.180030

Publisher

Bioscientifica

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3