Meniscal allograft transplants and new scaffolding techniques

Author:

Pereira Hélder12345,Fatih Cengiz Ibrahim45,Gomes Sérgio3,Espregueira-Mendes João4567,Ripoll Pedro L.2,Monllau Joan C.8,Reis Rui L.459,Oliveira J. Miguel4589

Affiliation:

1. Orthopedic Department of Póvoa de Varzim - Vila do Conde Hospital Centre, Vila do Conde, Portugal

2. Ripoll y De Prado Sports Clinic, Murcia-Madrid, FIFA Medical Centre of Excellence, Madrid, Spain

3. International Centre of Sports Traumatology of the Ave, Vila do Conde, Portugal

4. 3Bs Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal

5. ICVS/3Bs, PT Government Associate Laboratory, Braga/Guimarães, Portugal

6. Clínica do Dragão, Espregueira-Mendes Sports Centre, FIFA Medical Centre of Excellence, Porto, Portugal

7. Orthopedic Department, University of Minho, Braga, Portugal

8. Orthopaedic Department, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain

9. The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, Guimarães, Portugal

Abstract

Clinical management of meniscal injuries has changed radically in recent years. We have moved from the model of systematic tissue removal (meniscectomy) to understanding the need to preserve the tissue. Based on the increased knowledge of the basic science of meniscal functions and their role in joint homeostasis, meniscus preservation and/or repair, whenever indicated and possible, are currently the guidelines for management. However, when repair is no longer possible or when facing the fact of the previous partial, subtotal or total loss of the meniscus, meniscus replacement has proved its clinical value. Nevertheless, meniscectomy remains amongst the most frequent orthopaedic procedures. Meniscus replacement is currently possible by means of meniscal allograft transplantation (MAT) which provides replacement of the whole meniscus with or without bone plugs/slots. Partial replacement has been achieved by means of meniscal scaffolds (mainly collagen or polyurethane-based). Despite the favourable clinical outcomes, it is still debatable whether MAT is capable of preventing progression to osteoarthritis. Moreover, current scaffolds have shown some fundamental limitations, such as the fact that the newly formed tissue may be different from the native fibrocartilage of the meniscus. Regenerative tissue engineering strategies have been used in an attempt to provide a new generation of meniscal implants, either for partial or total replacement. The goal is to provide biomaterials (acellular or cell-seeded constructs) which provide the biomechanical properties but also the biological features to replace the loss of native tissue. Moreover, these approaches include possibilities for patient-specific implants of correct size and shape, as well as advanced strategies combining cells, bioactive agents, hydrogels or gene therapy. Herein, the clinical evidence and tips concerning MAT, currently available meniscus scaffolds and future perspectives are discussed. Cite this article: EFORT Open Rev 2019;4 DOI: 10.1302/2058-5241.4.180103

Publisher

Bioscientifica

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3