Affiliation:
1. Pediatric Orthopedics Service, Geneva Children's Hospital, Geneva University Hospitals, Geneva, Switzerland
2. Pediatric Radiology Unit, Geneva Children's Hospital, Geneva University Hospitals, Geneva, Switzerland
Abstract
Aims We aimed to describe the epidemiological, biological, and bacteriological characteristics of osteoarticular infections (OAIs) caused by Kingella kingae. Methods The medical charts of all children presenting with OAIs to our institution over a 13-year period (January 2007 to December 2019) were reviewed. Among these patients, we extracted those which presented an OAI caused by K. kingae and their epidemiological data, biological results, and bacteriological aetiologies were assessed. Results K. kingae was the main reported microorganism in our paediatric population, being responsible for 48.7% of OAIs confirmed bacteriologically. K. kingae affects primarily children aged between six months and 48 months. The highest prevalence of OAI caused by K. kingae was between seven months and 24 months old. After the patients were 27 months old, its incidence decreased significantly. The incidence though of infection throughout the year showed no significant differences. Three-quarters of patients with an OAI caused by K. kingae were afebrile at hospital admission, 11% had elevated WBCs, and 61.2% had abnormal CRPs, whereas the ESR was increased in 75%, constituting the most significant predictor of an OAI. On MRI, we noted 53% of arthritis affecting mostly the knee and 31% of osteomyelitis located primarily in the foot. Conclusion K. kingae should be recognized currently as the primary pathogen causing OAI in children younger than 48 months old. Diagnosis of an OAI caused by K. kingae is not always obvious, since this infection may occur with a mild-to-moderate clinical and biological inflammatory response. Extensive use of nucleic acid amplification assays improved the detection of fastidious pathogens and has increased the observed incidence of OAI, especially in children aged between six months and 48 months. We propose the incorporation of polymerase chain reaction assays into modern diagnostic algorithms for OAIs to better identify the bacteriological aetiology of OAIs. Cite this article: Bone Joint J 2021;103-B(3):578–583.
Publisher
British Editorial Society of Bone & Joint Surgery
Subject
Orthopedics and Sports Medicine,Surgery
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献