Early antibiotics and debridement independently reduce infection in an open fracture model

Author:

Penn-Barwell J. G.1,Murray C. K.2,Wenke J. C.3

Affiliation:

1. Royal Centre for Defence Medicine, Academic Department of Military Surgery and Trauma, Birmingham Research Park, Vincent Drive, Birmingham B15 2SQ, UK.

2. Brooke Army Medical Center, 3851 Roger Brooke Drive, Fort Sam Houston, Texas 78234, USA.

3. US Army Institute of Surgical Research, 3400 Rawley E Chambers, Fort Sam Houston, San Antonio, Texas 78234, USA.

Abstract

Most animal studies indicate that early irrigation and debridement reduce infection after an open fracture. Unfortunately, these studies often do not involve antibiotics. Clinical studies indicate that the timing of initial debridement does not affect the rate of infection but these studies are observational and fraught with confounding variables. The purpose of this study was to control these variables using an animal model incorporating systemic antibiotics and surgical treatment.We used a rat femur model with a defect which was contaminated with Staphylococcus aureus and treated with a three-day course of systemic cefazolin (5 mg/kg 12-hourly) and debridement and irrigation, both of which were initiated independently at two, six and 24 hour time points. After 14 days the bone and hardware were harvested for separate microbiological analysis.No animal that received antibiotics and surgery two hours after injury had detectable bacteria. When antibiotics were started at two hours, a delay in surgical treatment from two to six hours significantly increased the development of infection (p = 0.047). However, delaying surgery to 24 hours increase the rate of infection, but not significantly (p = 0.054). The timing of antibiotics had a more significant effect on the proportion of positive samples than earlier surgery. Delaying antibiotics to six or 24 hours had a profoundly detrimental effect on the infection rate regardless of the timing of surgery. These findings are consistent with the concept that bacteria progress from a vulnerable planktonic form to a treatment-resistant biofilm.

Publisher

British Editorial Society of Bone & Joint Surgery

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3