Early Detection of Breast Cancer using Deep Learning in Mammograms

Author:

,Gudur Rashmi,Patil Nitin, ,Thorat S.T.,

Abstract

Breast cancer still poses a serious threat to world health, needing creative approaches to early identification in order to improve patient outcomes. This study investigates the potential of deep learning methods to improve the precision and effectiveness of mammography interpretation for the identification of breast cancer. In this paper proposed, a convolutional neural network (CNN) architecture, ResNet50, is created and trained on a sizable data set of annotated mammograms. The CNN is made to automatically identify and extract pertinent elements, such as microcalcifications, masses, and architectural distortions,that may be symptomatic of possible cancers. The model develops the ability to distinguish between benign and malignant instances through an iterative process of training and validation, finally displaying a high level of discriminatory accuracy. The paper findings show that the deep learning model outperforms conventional mammography interpretations in terms of sensitivity and specificity for detecting breast cancer. Furthermore, the model's potential for use in actual clinical settings is highlighted by its generalizability across a range of patient demographics and imaging technologies.This study represents a big step in improving radiologists' capacity for breast cancer early detection. Our deep learning-based architecture has promise for improving the screening procedure and potentially decreasing the difficulties brought on by radiologist shortages by lowering false positives, improving accuracy, and offering quick analysis. By utilising cutting-edge technology to enable prompt and efficient detection, this study contributes to continuing efforts by the international healthcare community to improve breast cancer outcomes.

Publisher

Combinatorial Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3