Deep Learning Models for Type 2 Diabetes Detection in Saudi Arabia

Author:

,Alsulami Noha

Abstract

One of the predominant health issues affecting Saudi Arabia and leading to many complications is Type 2 diabetes (T2D). Early detection and significant preventative measures lead to curbing and controlling the health issue. There are fewer datasets in the literature for the detection of T2D in the Saudi population. Past studies using Saudi data have favoured machine learning algorithms to classify T2D. Although the application of this data in machine learning is evident, no studies exist in the literature that compare this data, especially those related to deep learning algorithms. This study's objective is to use specific Saudi data to develop multiple deep learning models that could be used to detect T2D. The research uses a Deep Neural Network (DNN), an Autoencoder (AE), and a Convolutional Neural Network (CNN) to create predictive models and compare their performance with a traditional machine learning classifier used on the same dataset that outperformed other machine learning algorithms such as a Decision Forest (DF). Various metrics were used to evaluate the effectiveness of the models, such as accuracy, precision, recall, F1 score and area under the ROC curve (AUC) where the ROC acts as a receiver operating characteristic curve. There are two cases in this paper: (i) uses all features of the dataset and (ii) uses six of the ten features, such as DF. In case (i), the results were shown that AE outperformed other models with the highest accuracy for imbalanced and balanced data 81.12\% and 79.16\%, respectively. The results for case (ii) showed that AE scored the highest 81.01\% accuracy with imbalanced data compared to DF and DF achieved the highest accuracy of 82.1\% with balanced data. As a result, both cases explored in this study revealed that AE has a constant superior performance if imbalanced data is used. In contrast, DF demonstrated the highest accuracy when a balanced dataset was used with a feature set reduction. They help to identify the undiagnosed T2D, and they are essential for professionals in Saudi Arabia in the health sector to promote health connections, identify risks and contain or improve their diabetes management.

Publisher

Combinatorial Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3