Hybrid Intrusion Detection System

Author:

Adhao Rahul,Mahefuj Samadhan,Pachghare Vinod,Khadse Vijay

Abstract

One of the most challenging aspects of a rule-based network intrusion detection system is the high false-positive rate, which makes it unreliable. This research study has developed a new hybrid system based on two-stage intrusion detectors in series to lower the system's high false-positive rate. At first, the rule-based system identifies incoming network packets as intrusion packets or normal packets. The trained machine learning model with feature reduction technique assists the classifiers in classifying the incoming packets as intrusion or normal. For the rule-based system, "Snort" is used, and for the second stage, a classification decision tree is used. A Genetic Algorithm (GA) technique is used for feature selection purposes. The final decision about intrusions is based on the prediction of both the learning systems. The experimental results show that this approach successfully reduces the false positive and false negative rates and increases rule-based NIDS accuracy.

Publisher

Perpetual Innovation Media Pvt. Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault Detection in Steel Surfaces Using Deep Learning Approaches;International Journal of Next-Generation Computing;2023-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3