Network Traffic Classification Using Feature Selections and two-tier stacked classifier

Author:

Adhao Rahul,Pachghare Vinod

Abstract

The datasets available for IDS performance evaluations are noisy and highly imbalanced. The noisiness of the dataset can be reduced with dataset pre-processing and feature selection approach. These datasets contain many records for some class labels (e.g., DoS, DDoS, Port Scan: majority attacks) and very few records for other class labels (e.g., U2R, R2L: minority attacks), making it imbalanced. Applying a single machine learning algorithm (classifier) on such datasets confuses the classifiers. The classifier becomes biased towards majority attack records and may fail to detect minority attacks. One possible solution to reduce these class imbalances of the dataset is to divide this dataset in terms of majority and minority attacks. The proposed approach divides the dataset into majority and minority groups to solve the issue raised by the imbalance dataset and uses two-tier classification approaches to classify majority and minority attacks. The CICIDS2017 dataset and NSL-KDD dataset are used for the evaluation of the proposed system. The proposed system gives an accuracy of 98.30% for the CICIDS 2017 dataset and 99.71% for the NSL-KDD dataset.  The model’s performance is explored in terms of precision, accuracy, and F1 score, which has been observed to be superior to existing works in the field of intrusion detection.

Publisher

Perpetual Innovation Media Pvt. Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Network Traffic Classification Method Based on CNN–RNN;3D Imaging—Multidimensional Signal Processing and Deep Learning;2023

2. Statistical feature selection based intrusion detection system for internet of things environment;COMPUTATIONAL INTELLIGENCE AND NETWORK SECURITY;2023

3. Ensemble Based Feature Selection Technique For Flow Based Intrusion Detection System;2022 IEEE 7th International conference for Convergence in Technology (I2CT);2022-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3