Extensive review on IoT security challenges and LWC implementation on tiny hardware for node level security evaluation

Author:

SUTAR SWAPNIL,Mekala PriyankaORCID

Abstract

Internet-of-Things (IoT) offers a novel intelligent ecosystem that consists of various physical objects interconnected via the internet, which draws the attention of researchers, academicians, and industrialists. Various physical objects are embedded systems that perform dedicated operations that include sensing, monitoring, and controls. Such connectivity of embedded system devices over the internet creates an intelligent mesh worldwide and makes city, industry, and human life entirely automated and intelligent. However, the existing embedded system with radio modules is battery operated, referred to as a low-resourced device. Further, it is expected that the device should consume less operational power. Tiny size devices are offering less memory which creates a resource-constrained environment. An efficient hardware implementation of security algorithms is challenging in a constrained environment that satisfies all performance metrics. Standard internet connectivity of all devices with new wireless paradigms (e.g. ZigBee, LoRa, Wi-Fi, SigFox, etc.) essentially needs to be scrutinized for secured data communication and other security flaws. The universal connection allows an adversary to access secured technology via vulnerable systems. Many researchers are analyzing IoT technologies in every possible aspect to provide an economically secured solution. Importing software-tested encryption standards on hardware with efficient results can produce reliable IoT nodes. In this paper, we present the overview of IoT infrastructure with supporting data communication protocols. Also, we discussed essential cryptographic design rationale to minimize overall structure with the importance of metrics. Environmental and implementation based challenges, trade-off, and importance of cryptography towards the development of secured IoT node with Light-Weight Cipher (LWC) ANU and PRESENT proof-of-concept for generic application is provided in this research.

Publisher

Perpetual Innovation Media Pvt. Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Machine Learning (ML) and Internet of Things (IoT): A Scientometric Review;2024 20th IEEE International Colloquium on Signal Processing & Its Applications (CSPA);2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3